Bioethanol Production from Steam Explosion Pretreated Straw
نویسندگان
چکیده
1.1 Motivation and environmental aspects The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and therefore contributes significantly to global warming. Interest in the development of methods to reduce greenhouse gases has increased enormously. In order to control such emissions, many advanced technologies have been developed, which help in reducing energy consumption, increasing the efficiency of energy conversion or utilization, switching to lower carbon-content fuels, enhancing natural sinks for carbon dioxide, capture and storage of carbon dioxide, reducing the use of fossil fuels in order to decrease the amount of carbon dioxide and minimizing the levels of pollutants. In the last few years, research on renewable energy sources that reduce carbon dioxide emissions has become very important. Since the 1980s, bioethanol has been recognized as a potential alternative to petroleum-derived transport fuels in many countries. Today, bioethanol accounts for more than 94% of global biofuel production, with North America (mainly the US) and Brazil as the overall leading producers in the world (about 88% of the world bioethanol production in 2009). Generally, biofuel production can be classified into three main types, depending on the converted feedstocks used: biofuel production of first, second and third generation. Bioethanol production of the first generation is either from starchy feedstocks, e.g. seeds or grains such as wheat, barley and corn (North America, Europe) or from sucrose-containing feedstocks (mainly Brazil). The feedstocks used for bioethanol production of the second generation are lignocellulose-containing raw materials like straw or wood as a carbon source. Biofuel production of the third generation is understood as the production of lipolytic compounds mainly from algae. The feedstocks of bioethanol production of the first generation could also enter the animal or human food chain. Therefore, bioethanol production of the first generation is regarded critically by the global population, worrying about food shortages and price rises. Other reasons which lead to research and developments in bioethanol production of the second generation are: a shortage of world oil reserves, increasing fuel prices and reduction of the greenhouse effect. In addition to this, the renewable energy directive (EC 2009/28 RED) demands a reduction for Europe of 6% in the greenhouse gases for the production and use of fuels. This reduction is only possible if biofuels are added to diesel fuel or gasoline by the year 2020. It also seems that the target for greenhouse gas reduction for Europe can only be
منابع مشابه
Cell-wall structural changes in wheat straw pretreated for bioethanol production
BACKGROUND Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these proc...
متن کاملLaccase detoxification of steam-exploded wheat straw for second generation bioethanol.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied du...
متن کاملAn Investigation of the Enhancement of Biogas Yields from Lignocellulosic Material using Two Pretreatment Methods: Microwave Irradiation and Steam Explosion
Two pretreatment methods, microwave irradiation and steam explosion, were investigated in this work. The aim of the study was to investigate whether these methods would improve the biodegradability of wheat straw as a lignocellulosic feedstock. Microwave pretreatment was carried out on milled straw with an irradiation time of 15 minutes, at a temperature of either 200 or 300 °C in the oven. The...
متن کاملAmores, Ballesteros, Manzanares, Sáez, Michelena and Ballesteros Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion
Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion 25 ABSTRACT Bioethanol is an alternative renewable fuel that can be produced from cellulosic biomass through hydrolysis and fermentation based processes. Sugarcane bagasse constitutes a potential lignocellulosic substrate for bioethanol production, since it has high sugar content and is a renewable, cheap and readily availa...
متن کاملIndustrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.
Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatmen...
متن کاملSSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production
BACKGROUND Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production pro...
متن کامل